A new proof of the refined alternating sign matrix theorem
نویسنده
چکیده
Abstract. In the early 1980s, Mills, Robbins and Rumsey conjectured, and in 1996 Zeilberger proved a simple product formula for the number of n × n alternating sign matrices with a 1 at the top of the i-th column. We give an alternative proof of this formula using our operator formula for the number of monotone triangles with prescribed bottom row. In addition, we provide the enumeration of certain 0-1-(−1) matrices generalizing alternating sign matrices.
منابع مشابه
A formula for the doubly refined enumeration of alternating sign matrices
Zeilberger [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey [9], for the number of alternating sign matrices with given top row. Stroganov [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik [7] considered a different kind of “doubly-ref...
متن کاملA formula for a doubly refined enumeration of alternating sign matrices
Zeilberger [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey [9], for the number of alternating sign matrices with given top row. Stroganov [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik [7] considered a different kind of “doubly-ref...
متن کاملNew enumeration formulas for alternating sign matrices and square ice partition functions
The refined enumeration of alternating sign matrices (ASMs) of given order having prescribed behavior near one or more of their boundary edges has been the subject of extensive study, starting with the Refined Alternating Sign Matrix Conjecture of Mills-Robbins-Rumsey [25], its proof by Zeilberger [31], and more recent work on doublyrefined and triply-refined enumeration by several authors. In ...
متن کاملThree alternating sign matrix identities in search of bijective proofs
These are rich combinatorial objects with connections to many problems in algebraic combinatorics (see [2], [3], [12]). They also have many different representations. The representation that was used in Kuperberg’s proof of the counting function for alternating sign matrices [9] and Zeilberger’s proof of the refined alternating sign matrix conjecture [14] is the six-vertex model of statistical ...
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 114 شماره
صفحات -
تاریخ انتشار 2007